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ABSTRACT: This paper is devoted for the investigation of accelerating flow of Oldroyd-B fluid at a plate under the 

assumptions of no slip effects. The analytical solutions are traced out for velocity and shear stress profiles by employing 

mathematical transforms (integral transforms) on the governing partial differential equations of integer order. The generalized 

solutions have been transcribed into the product of convolution theorem of transforms, multiple integrals and elementary 

functions. These solutions fulfill all implemented conditions (natural, boundary and initial conditions) as well. Particularized 

solutions have been reduced form generalized solutions for Newtonian, Second Grade and Maxwell fluids as the limiting cases 

of present analysis. At last, in order to bring few physical features from modeled problem, graphical illustration is under lined 

for contrast between models, flow parameters, retardation and relaxation time, material parameters with appropriate 

rheology.     
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NOMENCLATURE 

   Kinematic viscosity 

µ   Viscosity of the fluid    

ρ   Density of the fluid 

    Non zero constant  

   Fourier sine transform parameter                                   

         Laplace transform parameter  

t  Time parameter 

       Relaxation time  

        Retardation time  

     Velocity field for Oldroyd-B fluid 

    Velocity field for Maxwell fluid  

     Velocity field for Newtonian fluid 

     Velocity field for Second Grade fluid 

     Shear stress for Oldroyd-B fluid  

    Shear stress for Maxwell fluid 

     Shear stress for Newtonian fluid 

     Shear stress for Second Grade fluid  

          Heaviside function 

 

INTRODUCTION 
The Navier-Stoke’s equation is an equation which governs on 

the characteristics of Newtonian fluids but the description of 

rheology for complex fluids (non-Newtonian fluids) has 

become inadequate by Navier-Stoke’s equation. The complex 

fluids lie in non-Newtonian fluids for instance, paints, 

cosmetic products, exotic lubricants, polymer solutions, clay 

coatings, colloidal and suspension solutions, certain oils and 

several others. The non-Newtonian fluid flows have 

significance because of scientific point of view in which 

nonlinearity of fluid has practical significance in science, 

engineering and industries. In order to detect the 

characteristics of non-Newtonian fluid, many models have 

been presented in literature such as integral type, rate type and 

differential type. The second grade fluid lies in the category of 

differential type known as simplest subclass model which 

delineates the differences of normal stress, on contrary the 

phenomena. Of thickening and thinning can not be predicted 

by this model. In continuation, the complexities in different 

constitutive equations are apparent like, Maxwell model that 

describes the relaxation phenomenon of fluids and Oldroyd-B 

model that demarcates the relaxation as well as retardation 

phenomenon of viscoelastic fluids [1-4]. Sanela and et al. 

investigated effects of two vertical oscillating plates for 

unsteady second grade fluid [5]. Zhang and et al. have 

analyzed the thermal convection for Oldroyd-B fluid for 

stability of nonlinear and linear in heated porous medium 

from bottom [6]. Kashif and et al. examined effects of no slip 

condition for analytical solutions of Maxwell fluid in 

unidirectional plate. He obtained analytical results for velocity 

field and shear stress using mathematical transforms satisfying 

all imposed conditions [7], same authors extended the results 

for second grade fluid embedded in porous medium using 

fractional derivative approach [8]. In brevity, we include here 

few recent references as well [9-14]. However, our aim is to 

analyze the investigation of accelerated flow of generalized 

Oldroyd-B fluid on the plate under the assumptions of no slip 

effects. The analytical solutions are traced out for velocity and 

shear stress profiles by employing mathematical transforms 

(integral transforms) on the governing partial differential 

equations of integer order. The generalized solutions have 

been transcribed into the product of convolution theorem of 

transforms, multiple integrals and elementary functions. These 

solutions fulfill all implemented condition (natural, boundary 

and initial conditions) as well. Particularized solutions have 

been reduced form generalized solutions for Maxwell, Second 

Grade and Newtonian fluids as the limiting cases of present 

analysis. At last, in order to bring few physical aspects from 

modeled problem, graphical illustration is under lined for 

contrast between models, flow parameters, retardation and 

relaxation time, material parameters and other rheology. The 

graphs are drawn using Mathcad package (15) with SI units.       

  
GOVERNING EQUATIONS 
The Oldroyd-B fluid is characterized by the constitutive 

relations [15-16],  

       ,  
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In order to investigate the governing equations, we suppose 

velocity field of the type  
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If fluid is at rest at the moment       then constraint of 

incompressibility is consistently justified for this flow, 

                                                           

solving  (1) and (2) reduces to 
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For nonappearance of pressure gradient, Oldroyd-B fluid has 

equations are 
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Suppose an incompressible Oldroyd-B fluid lodging the space 

overhead an accelerated plate vertical to the y-axis, to arise 

with fluid is at rest and at the moment t = 0
+
 the plate is 

suddenly taken to the variable velocity in plane. Due to shear, 

the fluid overhead the plate is gradually accelerated. The 

appropriate problem under initial and boundary conditions are 

       
       

  
                                           

                                                                   
Further 

             
       

  
                                      

equation (9) is satisfied.                                        

                                     

 

 

                                   
 

                                                                                          

                                                                                                                               

  

  

                                   

               

Figure 1. Schematic Graph of                 . 

 

SOLUTION OF THE PROBLEM 
Applying Fourier Sine transform on equation (5) and 

considering equation (7) and (8), we obtain 
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where, Fourier sine transform is defined as 
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must justify equation (7) as 

         
        

  
                                                

By applying the Laplace transform to equation (10), (7) and 

(8), we find 
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equivalently 
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Inverting (14) by means of the Fourier sine formula, we get 
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or equivalently 
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where  
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are the roots of the algebraic quadratic equation  

 ,   (
       

  

 
)   

   

 
-      

Finally, we apply the inverse Laplace transform to (16) using 

the fact integration  
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We find velocity field in convolution form, 
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or equivalently in integral form, 
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For perusing shear stress, we apply Laplace transform on 

equation (6), we get 
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precisely solving, we find that 
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Finding derivative partially equation (16) with respect to y, 
  ̅
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Employing equation (23) in equation (22), we have  
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More equivalently equation (24) can be expressed as 
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Applying inverse Laplace transform on equation (25), we get 

shear stress  
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or equivalently in integral form, 
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LIMITING CASES 
Maxwell Fluid 
Substituting       into equations (20) and (27) 
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Second Grade Fluid 
Employing the limit      into equations (20) and (27) 
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Newtonian Fluid 
Employing     and      into equations (20) and (27) and 

having following relations  

 

                  
      

                                                         

                  
      

                                                         

                  
      

                                                   

the solutions are reduced  
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are achieved. 

NUMERICAL RESULTS AND CONCLUDING 
REMARKS 
In this section, analytical results have been plotted using 

various numerical values in order to bring some physical 

aspects from accelerating plate. The analysis for investigation 

of accelerated flow of generalized Oldroyd-B fluid on the 

plate under the assumptions of no slip effects is sought out. 

The analytical solutions are traced out for velocity and shear 

stress profiles by employing mathematical transforms 

(integral transforms) on the governing partial differential 

equations of integer order. Finally the validations and 

accuracy of the fluid flow is illustrated by making several 

graphs using Madcad software (15). However the main results 

and outcomes are generated below:  

 Figure 2 depicts the increasing behavior of velocity 

as well as shear stress profile when time is varying 

and all remaining parameters are fixed. 

 The relationship between relaxation and retardation 

phenomenon is under lined in figures 3 and 4. 

Dynamically oscillations of fluid flows have been 

examined on both velocity field and shear stress. 

 Figure 5 is plotted to shoe effects of viscosity of fluid 

on plate, in which velocity field has sequestrating 

behavior of fluid, on contrary shear stress tends to 

scattering. 

 The opposite rheology is observed from figures 6 and 

7. This is due to increment of nonlinearity on the 

fluid motion.          

 By seeing figures 8 and 9, motion of Newtonian fluid 

for the velocity field and corresponding to the shear 

stress are faster than as compare to and contrast with 

Oldroyd-B, Maxwell and Second Grade fluid.  

 Seeing figures 8 and 9, amongst all mentioned fluids 

such as Maxwell, Second Grade and Newtonian, 

sometimes Newtonian fluid moves fastest.
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